Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Motivation In recent years, the well-known Infinite Sites Assumption (ISA) has been a fundamental feature of computational methods devised for reconstructing tumor phylogenies and inferring cancer progressions. However, recent studies leveraging Single-Cell Sequencing (SCS) techniques have shown evidence of the widespread recurrence and, especially, loss of mutations in several tumor samples. While there exist established computational methods that infer phylogenies with mutation losses, there remain some advancements to be made. Results We present SASC (Simulated Annealing Single-Cell inference): a new and robust approach based on simulated annealing for the inference of cancer progression from SCS data sets. In particular, we introduce an extension of the model of evolution where mutations are only accumulated, by allowing also a limited amount of mutation loss in the evolutionary history of the tumor: the Dollo-k model. We demonstrate that SASC achieves high levels of accuracy when tested on both simulated and real data sets and in comparison with some other available methods. Availability The Simulated Annealing Single-Cell inference (SASC) tool is open source and available at https://github.com/sciccolella/sasc. Supplementary information Supplementary data are available at Bioinformatics online.more » « less
-
Abstract Motivation We propose Meltos, a novel computational framework to address the challenging problem of building tumor phylogeny trees using somatic structural variants (SVs) among multiple samples. Meltos leverages the tumor phylogeny tree built on somatic single nucleotide variants (SNVs) to identify high confidence SVs and produce a comprehensive tumor lineage tree, using a novel optimization formulation. While we do not assume the evolutionary progression of SVs is necessarily the same as SNVs, we show that a tumor phylogeny tree using high-quality somatic SNVs can act as a guide for calling and assigning somatic SVs on a tree. Meltos utilizes multiple genomic read signals for potential SV breakpoints in whole genome sequencing data and proposes a probabilistic formulation for estimating variant allele fractions (VAFs) of SV events. Results In order to assess the ability of Meltos to correctly refine SNV trees with SV information, we tested Meltos on two simulated datasets with five genomes in both. We also assessed Meltos on two real cancer datasets. We tested Meltos on multiple samples from a liposarcoma tumor and on a multi-sample breast cancer data (Yates et al., 2015), where the authors provide validated structural variation events together with deep, targeted sequencing for a collection of somatic SNVs. We show Meltos has the ability to place high confidence validated SV calls on a refined tumor phylogeny tree. We also showed the flexibility of Meltos to either estimate VAFs directly from genomic data or to use copy number corrected estimates. Availability and implementation Meltos is available at https://github.com/ih-lab/Meltos. Contact imh2003@med.cornell.edu Supplementary information Supplementary data are available at Bioinformatics online.more » « less
An official website of the United States government
